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3 SYSTEM SIZE AND REMAINING SERVICE IN M/G/1

Abstract

I Wishart [1961] and Takics [1963] derived the joint distribution of the size N and residual

service R as encountered by a new arrival into a regular M/G/1. Wishart obtained the
0ollAx I

following expression for the gei,cia in function fl(z,x) = -11X)z , where 11, Pr(R<x,
0I N =j):0

00

(z1 (- p) Az(l -z) j e-Ml-z)
We exploit the fact that the system size N is known and find the conditional r.v.'s 4R,

I residual service seen while N =j.4 Our method seems better suited to numerical work and we

extend it to some variants of M/G/1: M/G/l/K, and then M/G/1 and M/G/I/h with state-

dependent service and arrival rates.

pI

paeU

.. ..Im I N m m m ( I -) -



I.I
Notation (for browsers; the symbols are also defined in context)

I N = size of system;

N. = size of system provided server works;

A = (poissonian) arrival frequency

Aj = arrival frequency when N =j

x = service time;

I x= (state-dependent) service time of a customer whose service starts when N =j;

h(t) = Pr(x < t);

fyjt) = Pr(xj < t);

3 Pi = Pr(N =j);

P. = Pr(server busy);

3 V(x) is an arbitrary function of x; O(x,y) is an arbitrary function of x,y;

D 2 4'(x,y) = 90(x,y)/Oy; partial derivative with respect to the second argument

fij =frequency of jumps "i - j"

3 C*X = X 1+X 2 ++Xc where the x i are free copies of x (i.i.d. r.v.'s equivalent to x

and also independent of other variables within the argument)

O'(Z) is an arbitrary function of Z such that EO(Z) <oo (all terms entering analysis

are required to have finite expectation, e.g. Ee!(Z))

I Et(Z) is called the omni-transform of b(Z). When V'(Z) = exp(-sZ) and Z>O

3 then E '(Z) is the L-S transt-'rm of Z

I

I
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I Section 1 Service Residues as Conditioned on System Size in M/G/1

3 Find R, the residual service time ("residue") of the ongoing service as seen when N = j, j>1.

Assume the Py = Pr(N =j) to be known (e.g. Gross and Harris 1985).

I Definition Let V(X) be an arbitrary function of the process X with finite EO(X)

3 and EVt(X). We call EV'(X) the omni-transform of X; if V'(X) =- e- s X we get the L-S

transform. The balance of the process ¢(X) is the equation Edr(X) = 0 for a random

3 dt.

The essence of the omni-method is to study the balance of tk(X) rather than of X. Among the

method's advantages are freedom to choose 1b, notational ease in handling sums and mixtures

3 of r.v.'s, and bypassing L-S transforms in many contexts.

Definition ZJ ARJ if N =j and Z, A0if N :j

The process 4(Zj) varies by aging and jumps: j - 1-.j, j + 1-j, j--.j- 1 and j-*j + 1. We

3 assume EdV'(Z,)= 0 for a random dt and work out the balance. For a random dt:

(a) aging adds: EdVk(Zi)Iain, = P1 E[g(R1 - dt) - O(R1 )] = -dt P1 Eb'(R1 ); dR 1 = -dt

(b) jumps "0-4.1" add: EdO(Z1 )10-_ 1 = dtf0 1 E'(x)- '(0)]; f01 =-APO

I (c) jumps "2-+.1" add: Edb(Z)12 -. 1 = dtf21 EIO(x) - '(O)]; f 21 = f12 = API

3 (d) jumps "1--0" add: Edk(Z 1 )J1. 0 = dtfl0 EI(0)- (0)] = 0

(since Z1 = R, = +0 just before "1-0" and Z1 = 0 in any state other than "1")

(e) jumps "1--,2" add: EdVb(Z 1)I1- 2 = dtf 12 E[4'(0) - '(R{)]; f12 = AP1

I From (a) through (e) we get the balance of V(Z1), i.e. EdV'(Zl) = 0,

3 [P Et/'(R1 ) + f 2 E[V'(R 1 ) - V'(O)] = (f01 + f2 ) E[(x) - (0)] (1.1)

where f01 - = AP0 and f12 = f21 = AP 1 . The right side of (1.1) is known.

I
page 3

I
I



m
I

Definition The omni-convention calls for mentally applying the expectation operator E to each

side of an omni-equation; in case of ambiguity we retain E. (This convention is kin to sum-

mation convention in matrix and tensor calculus.) E.g. (1.1) becomes

I P1 V,'(R 1 )+ f12 [t(R1)-'(O)] = (f0 1 + f 21)[b(x) - V(6)1I (1.2)

Let us consider the changes in EV,,(Z,) for aj >2. During a random dt:

(A) aging adds: Edik(Zj)ging = PiE (Rj-dt)-V,(Rj)] = -dtPyEV5'(Rj); dRj = -dt

(B) jumps "j - 1-#j" add: EdO(Zj)i_.. = dt fi_1,, EIV(R._ 1 ) - V:(O)]; f,-,i = APj-1

I (C) jumps "j + 1-j" add: Ed¢(Z)I1 +--.j = dtf,+,,, Etg(x) - V'(0)]; fj+1 ,j = fji+l = A Pi

3 (D) jumps "j-j - 1" add: EdV(Z,)I,__,_ dt fj,-,_1 EJV(O) - O(O)] = 0

(E) jumps "j-*j + 1" add: Edo(Z,)I...,+ - dtfjj+l [VI(O) - V(Rj); fj,,+ 1 = A Pi

From (A) through (E) we get the balance of V(Zj)

5 P, V'(R,) + fj,.11 [V(R,) - V(0)] = fi_.4 , [V,(R,_) - 1(0)) + f,+1,, [t0.x) - V'(0)] (1.3)

where fjj-, = f-l,j = Aj-i P,.- 1 and fi,,+, = f,+1 ,, = AiPi •  The right side of (1.3) is

known when we solve for successive values of j > 1.

I From (1.2) and (1.3) we get equations for moments; or L-S transforms; or tail distributions of

R i by setting tP(R,) = R j ' for i > 1; or V(R,) = exp(-sR,); or O(Rj) = j where I= 1 if

R i > t and j = 0 if R i > t for then f1,(t) -A Pr(Rj > t) = E~i.

3 Note: We can set EO(Rj) = Pr(Rj > t) if we know that Pr(R, > t) = EC(R,) for some

(Rj). In linear omni-equations with constant coefficients, as in our paper, we can viewaano

I as a general functional. We need not then find a (Rj) and necd no omini-convention.

Let tP(Rj) = Hj(t) A Pr(Ri >0) in (1.1) and (1.2) and let V(x,) = Pr(x, > t) A 3(t). Then

= (Ri-dt) - V/(Rj) Pr(R, -dt > t) - Pr(R, > t)

-dt = lim -dt -

page 4
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I
lir fij(t + dt) - HP j(t)

-dt - -H'l(t)

dd
I and we get with A(t) A Pr(x>t)

j = -P, fi'(t) + AP, fl2(t) = (AP0 + AP1)IB(t) (1.4a)

i > 2 [ -Pj HIt) + APl(t) t= AP_1. 1 I j (t) + AP, B(t) (1.4b)

I t,(t) can be found from (1.4a); from (1.4.b) we can derive fH(t) if iH.,(t) is known. Thus we

I can find the fij(t) for successive j. Equations (1.4) are easily verified for M/M/1 with

Hj(t) = fi(t) = e- ' t for each j. Moreover (1.4a) implies

I j1 f(t)--O as t-.oo, and Pj f:i(t)-.-AP,-, as t-*O (1.5)

3 From (1.1a) and (1.2a) we get the recursive relations for Rj

AP 1 ,f 1 = pP 0-(1-p)P 1  and AP,+, RIj+ = APjRj-(1- P)P I (1.6)

If we know all the conditional io(Rj) we can get the V(w). Clearly

U w0 = 0 and w, = V'(wjN =j) = V,((j -1)*x + Rj), j>1 (1.7)

3 V(w) = P 0 (0) +P (Rl) + P 2 ,'(1.x + R 2 ) + P 3tk(2*x + R 3 ) + P4 V,(3*x + R 3 ) + + (1.8)

where c*x A x, + + xc; the xi are free copies of x (i.i.d. copies of the generic x and

I independent of the Rj).

3 Note: Using the renewal relation (Krakowski 1987)

OI'(Z) - VI(0) = 2 EVI(%RZ), Z >0 9,Z = residue of Z

we can recycle (1.2) and (1.3) into (omni-convention still holds!)

[ P1 g(R 1 ) + f12 R V(% R1 ) = (f0 1 + f 21 ) R 4'(Ax) (1.9a)

3 [P,(Rj) + fj+l R ,(%Rj) = fjj R,.j V((.Rj,) +fj+l,, , R ,,x) (1.9b)

Equations (1.9) have no derivatives ,' and thus in a sense are integrals of (1.2) and (1.3).

I But since both R, and %R, arc z-,;:ments in (1.9) there is no labor saved unless we take

page 5I
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3 a special interest in the 90R in addition to R,.

i [ Conjecture: Rj-.residue of x as j--.oc

I
I
I
I
I
I
I
I
I
I
I
I
I
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Section 2 N, R in M/G/1 with State Dependent Service

I We modify M/G/1 as follows. A service which starts when N =j lasts xj,j > 1. Our problem

3 is to find the Ri for j> 1 assuming that the P, are known (Harris 1967, Gross and Harris

1985, pp.289-292; Krakowski July 1986; a closely related vacation model was treated by Harris

& Marchal 1988.)

Let Zd R, if N =j and Zi d0 if N 0 j; V(Zj) is arbitrary except for E,(Z,) <oc and

I EV(Zj)< oo. During a random dt

(a) aging adds: EdV(Z1)Ia,,,,g = P1 Et"(R1 - dt) - ,(R 1 )] = -PI dt E,'(R1 ); dR 1 = -dt

3 (b) jumps "0-# 1" add: Ed{(Z1)lo.1  = dt fol EIV,(x×) - ,(0)]; fol = APo

(c) jumps "2-*1" add: EdV(Z 1 )12 _. 1 = dtf:1 EIV(xl) - V(0)]; f 21 = f 12 = AP1

I (d) jumps "1-+0" add: Ed '(Zl)l_. o = dt flo El/'(O) - V'(0)] = b

(e) jumps "1--.2" add: Ed'(Z)-1 .... 2 =dtf 12 E!(0)- (R1 )J; f12 = API

From (a) through (e) we get (mind the omni-convention!)

Balance of V'(Z,) I P, '(R 1 ) + f12 [Y(R 1 ) - V(0) = (f0 + f 2 ,)[:(xI)-(0) ] (2.1)

I where f01 = fl0 = AP0 and f, 2  f2 l = AP 1  Thc rght sid- of (2.1) is known.

3 For j > 2, during a random dt:

(A) aging adds: EdVI(Zj)I,gin = Pj Efb(Rj - dt) - V,(Rj)] = -dt PI V!(R 1 ); dRj = -dt

(B) jumps "j-I-.j" add: EdV (Z=)II-j dtf,_ 1,.i [V(R,) - V(0)J; f,_,, = _

I (C)jumps "j+ 1- j" add: EdV'(Z,)I+-. = dtfl+,,, E," (Yx) - V( 0)]; fj+,j = f,,j,+ = APJ

3 (D) jumps "j-,j - 1" add: EdV'(Z 1 )Ij._. ,- = dtfj,j.[./,(0) - V,(0)] = 0

(E) jumps "j-j + 1" add: EdV(Zj)j-.j+i = dtfj,i+l E[0(0) - (Rj)]; fi,jl = APj

From (A) through (E) we get the balance of V,(Z,) (mind the omni-convention!)

* page 7
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I

P, P'(R,) + fj,, [O(R,) - ( = f,_ , - V'(o)] + fT,,, [V'(x,) - V(O)I (2.2)

where fj,j- = fj-l,j = Aj-lj P,- 1 and f,,+l = fj+,.j = jPj. The right side of (2.2) is known

when we solve for successive values of j> 1.

When all service lengths xj are free copies of a generic x, i.e. ,(xj) = Vb(x) for each j > 1, then

3 (2.1) and (2.2) become (1.2) and (1.3) respectively - as they should.

We get =j(t) A Pr(R, > t) by setting Et,(Rj) = Pr(R, > t).

Note: It is enough to know that E (Rj)=Pr(R,>t) for some function (Rj) - we do not

have to actually determine ((Rj).

It follows that

j=11 P,fil(t) - AP, ft,(t) = AP o - A(Po + PI) 8l(t) (2.3a)

3 j>2 P,H(t)- AP,,j(t) = APj_ - AP,_ , ,1 (t) - \P, ,(t) (2.3b)

The right side of (2.3a) is known; so is the right side of (2.3b) for each j when the ti(t) are

known for i <j. (2.3a,b) imply that for each )> 1,

I Pi il(O) = A P.i- (2.4)

From (2.1) and (2.2) we get

AP, 1 ,= (P 0 +Pl) Ax - P1 and APj+ , +1 = AP j -(1 - Ax,+l)P+ 1  (2.5)

When, for each j> 1 , B(t) = B3(t), then (2.3a,b) become (1.4a,b), as they should.

3 j =1 -P fi(t) + AP, 1l1 (t) = (AP0 + AP1 )13(t) (1.4a)

i 2 [ -- P, fl;(lt) + AP, fti(t) = APj_j f1i_ 1 (t) + AP, B(t) (1.4b)

The question arises, Can we derive the load or delay from (2.1) and (2.2)? Unfortunately, we

3 see no fair way. In our model with state-dependent service the virtual load and dela (and

kindred time lengths) depend on future arrivals; this makes them essentially more complex.

I
page 8I
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I Section 3 The Ri and the Load In M/G/1/K

Consider an M/G/1/K, i.e. where N <K; customers arriving while N =K are lost. We

consider the load (backlog, unfinished work) L; L = w, the virtual delay, when N < K but for

SN= K w is not defined. We assume the P, to be known (Gross and Harris, p. 279-285, 1985).

5 Cleariy

V,(L) = P0aI'(O) + P, V(Rl)+ P2 ,'(l*x + R 2 )+ P3 {'(2,x + R3)+ + PK 0((K - 1),x + R3 ) (3.1)

I Deiine now V'(Zj) as before: t (Zj) Ad V(Rj) if N = j and V,(Z,) =,(0) otherwise. The balance

of V'(Z,) clearly yields the same equations for j = 1 and for 1 <j < K as the balance for regular

M/G/1. For j = K during a random dt

I (a) aging adds:

Ed4(ZK)oging = PK E1q(RK - dt) - Vf(RK) ] =-dt P'K '(R A); dRK =-dt

(b) the jumps "K - I-+K" add:

5 EdV(ZK)K. K = dt fK)K EI' (RK/-)- -(0)]; fK-iK = AP/<_

3 (c) the jumps "K-+K-1" add:

EdV,(ZK)IK- K-1 = dtfK- K,- E V:(0) - V-(0)] = 0

3 Therefore

j = 1: P, '(Rl) + f12[t"(Rl) - ¢,(0)] = (f0 1 +f 21 )[4'(x) - V(0)] (3.2a)

1 <j < K: P1 4t(Rj) + fj, 1 4(Rj)- 0(0)] =

3 = f,,j [4'(Rj_1) - g1(0)] + f,.+l, f['(x)- V'(0) (3.2b)

K K 4,'(R_ ) = - [(RK ) - 4(0)] (3.2c)

The tail distributions Il,(t) A Pr(R, > t) satisfy

I j =1 -P WI(t)- AP, fl(t) = (AP 0 + AP0 )f3(t) (3.3a)

3 1 <j < K -P, H~_ 1(t) + AP, l-l(t) - . P, 1 Ht ,_(t) + APj B(t) (3.3b)

page 9I
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j = K PK f,'IK(t) = APK- IRIK-H(t) (3.3c)

Starting with j=1 we can compute the successive l(t). Defining R=O for N =0 (readers

may favor other definitions) we have

,P(N,R) = P 0 (O, 0) + P1 (1,R 1 )+ P2 ,(2, R 2 ) + + PK (K,RK) (3.4)

I For the load L (unfinished work, backlog) we have

3 i(L) = P 0 ¢(0) + P1 0(R1)+ P 2 V'(x + R 2 )+ P 3 0(2*x + 11)++ PKVO((K-1)*x + RK) (3.5)

which appears to be new. The economic motivation must be strong to numerically evaluate

the moments or the distribution of L; but the complexity appears to inhere in the problem,

3 not in our method.

p
I
I
I
I
I
I
I
I
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I Section 4 M/G/1 With State-Dependent Service And Arrival Rates

I We extend now M/G/1 with state-dependent service lengths of Section 2 by allowing also

state-dependent arrival rates. The service time is still determined at the instance in which a

service begins and equals xi, i being the size of the system, including the customer to be

served. The arrival rate is Aj when system size is N=j. Let us act as if the Pj are known. So

soon someone derives these Pj our derivation of N, R for this model will be completed.

I Let, as in Section 2, Z1 A Ri if N =j and Zi A 0 if N Oj; V,(Zj) is arbitrary but subject to

3EO(Zj) < o and E~f(Zi) < oo.

It is easy to see that equations (2.1a) and (2.2a) stay valid but their frequency coefficients

I reflect the changed arrival and service rates. Clearly we now have

3P, 0'(R1 ) + f1 2 [¢(R 1 ) - ¢(O)] (f01 + f2 l)[¢(x1 ) - 4(0)] (2.1a)=(4.1)

P pO'(Rj) + fj,j+1kt(Rj) - 0(0)] = fj_.,1 [i,(R _) - k(O)] + TB',, ('(x ) - 4(0)] (2.2a)=(4.2)

with fol = O PO; f 12 = f=l = \1 P 1 ; fj-li = Aj-1 Pj-1 ; f =ijl = f +,1 j = -- " P,"

From (4.1) and (4.2) we get f =j(t)d Pr(Rj > t) by setting EV(R,)= Pr(Rj > t). Thus

j = 1 P1 I (t)- AP1 H1 (t) = OP -(AoP o + A, P 1 )B1 (t) (4.3a)

> 2 [-Pj 1l(t) + Aj Pi H,(t) = A 1 Pj-. f1iJ(t)+AJ P, Bij(t)] (4.3b)

U The right side is known for (4.3a), and for (4.3b) if we solve for successive j>l. (4.3a) and

(4.3b) imply that for each j>1 (4.4)

3 (4.1) and (4.2) imply

\ 1 P1 IR1 = (AoPo+ AP I )RI-P 1 and AjPiTj = Aj_1 PJI.. , 1 + AxjP1  (4.5)

page 11
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3Section 5 M/G/1/K With State-Dependent Service and Arrival Rates

3 We extend M/G/1/K with state-dependent services of Section 4 by allowing state-dependent

arrival rates; service time xi still depends on system size (including customer served) when

service starts. The arrival rate is Aj when N =j. We act as if the Pj are known, but there

seems to be no analytical derivation yet available.

Define, as in Section 2, Zj Rj if N =j, and Zj -0 if N j; jI. Let O(Z) satisfy

U EO(Zj) < oo, Etk'(Z,) < oo, and be otherwise arbitrary; then

31k(Zj) (1 - Pj)¢(0) +P (5.1)

It is clear that the equations (3.3a,b,c) are still valid so that

j = I P 1 tI"(R 1 ) + f 12 [b(R 1) - 0(0)] = (fo1 + f21 ) [V'(x 1 ) - ¢'(0)] (3.3a)=(5.2a)

1 <j <K Pj '(Rj) + fj,+l [(Rj) - V(0)l = (3.3b)=(5.2b)

= fj-lj [k1(Rj- 1) - V(0)] + fj+l,j [V'(xj) - '(0)]

j = K PK Vb(RK) = fK-1,K [¢(RK-) - 1(0)) (3.3c)=(5.2c)

I f 1 o = AO PO; f12 = f21 = Al Pl; fj-l,j = fjj-1 "= Aj-1 Pj-1; fj,j+l "- fjPi.j --;Pj.

With the modified fij, the tail distributions Hi(t) d Pr(Rj > t) satisfy

j = 1 -P 1 f(t)+A P1 F11(t) = (Ao Po + A, Pj) f 1 (t) (5.3a)

1<j<K -Pj fIH 1(t) + Aj Pi fi,(t) = Ap- Pj_1  .1j-(t) + A, P, h(t) (5.3b)

I j= ""g -PK"H.(t) = AK K-1 fI(t) (5.3c)

3 We can compute all f1j(t) forj 1. Defining (N,R) = (0,0) for N =0, yields

V'(N,R) = Po (0,0)+ P 1 (1,R 1)+P 2 V,(2,R 2 ). +PK '(K, RK) (4.4)

I We cannot from the foregoing find (certainly not easily) the load or delay or any such variable

3 because at any instant these durations depend also on future arrivals.

page 12



Appendix Joint Treatment of System Size and Residual Service In M/G/1

3 We derive now a single global omni-equation equivalent to equations (1.2) and (1.3).

Definition N,Z) d0(0,x) when N=0 and ON,Z) -A(N.,R) when N>I; Ob(N,Z) is defined

I at any time point.

Let N.=system size provided N>1. R is defined only when N>1 so it needs no asterisk. We

assume that O(N,Z) is a balanced r.v., so that EdO(N,Z)=0. Of course we have

I O(N,Z) = P0O(0,x)+P.O(N.,R) P 0 = AR P. = 1 -AM (A.1)

Let us consider the balance of O(N,Z) during a random dt:

(a) aging, which goes on only while N > 1, adds

EdO(N,Z)Iagig=P.E[O(No,R-dt) - O(No,R)] = -dtP.ED 2 ((N.,R); P. = Pr(N >1)

I (b) arrivals "0-.1" add EdVi(N,Z) 0 . 1 = f0 l E[0(1,x) - 0(0,x)j; f0 1 = \P0

(c) arrivals while N> 1 add EdO(N,Z)I.. = f.EJO(No. + 1,R.)- (N.. ,Ra)); f. = AP.

A subscript a* says that the r.v. is found by an arrival into a busy system.

Since true poissonian arrivals see, stochastically, what a continuous or random (poissonian)

3 observer sees (cf. Wolff 1982), we have O(Na.,Ra) = O(N.,R) and

f.Et,(N°.+I,R a )-¢(N 0 .,Ra)]=f.EIV,(N.+I,R)- t(N.,R)]; f.=AP.

(d) departures (perforce from a busy system) add

I EdO(N,Z)Id = AE[V(Nd,X) - O(Nd +1,0)]; departure rate = arrival rate = A

3 Subscripts d say that a r.v. is seen by a just departed customer. (System size is Nd+l just

before a departure, and is Nd just after.) Since V(Nd) = O(Na) = V(N), and since Nd and x

I are independent,

EdO(N,Z)d = \E[V,(Nd ,x) - O(Nd +1,0)] = AEIVb(N ,x) - O(N + 1,0)]
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I From (a) through (d) we get (mind the omni-convention!)

-P.D 2 b(N.,R) +fo 1 [(1,x) - 10(0,x)] + f.[V(N. + 1,R) - O(N.,R)] +

+ A[N,x)- O(N +1,0)1 = 0 (A.2)

U where P. = 1-Po = p = AR; f0 l = APO = A(1-p); and f.= arrival rate while server works

= AP..

With tk(N) = P 0 t(0) + P. (N.) we get from (A.2) the equation

P. D 2 w(N.,R) - AP. [iLN.+1, R)- b(N.,R)] +

S+ A P. [,P(N. + 1, 0) - V(N., x)] -- APe0 [10(l,x) - 0(l,0)) (A.4)

Equation (A.4) does not depend on the definition Z = x when N = 0.

By specializing (A.4) to

1 0(N., R) = Pr(N.=j, R>t)- P.j fI(t) = Pj fij(t)/P. (A.5)

where P.j = Pr(system size jiserver works) = Pj/P. we get equations (1.4) = (A.6)

j - -P 1 fi'(t) + API il(t) = (AP0 +AP 1 ) fB(t) (1.4a)=(A.6a)

j>2 [-P ~(+ Pl(t)+ AP H+ B(t) (1.4b)=(A.6b)

I Equation (A.4) is equivalent to the infinite set (1.2) and (1.3). But (A.4), unlike (A.6),

cannot be adapted, we think, to variants of M/G/I.

p
I
I
i
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